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The inverse variational problem for autoparallels
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Abstract. We study the problem of the existence of a local quantum scalar field theory in a general
affine metric space that in the semiclassical approximation would lead to the autoparallel motion
of wavepackets, thus providing a deviation of the spinless particle trajectory from the geodesics
in the presence of torsion. The problem is shown to be equivalent to the inverse problem of the
calculus of variations for the autoparallel motion with the additional conditions that the action (if
it exists) has to be invariant under time reparametrizations and general coordinate transformations,
while depending analytically on the torsion tensor. The problem is proved to have no solution for
a generic torsion in four-dimensional spacetime. A solution exists only if the contracted torsion
tensor is a gradient of a scalar field, while the traceless part is zero. The corresponding field theory
describes coupling of matter to the dilaton field.

1. Introduction and motivations

In Riemann–Cartan spaces, a connection0µν
σ compatible with the metricgµν (meaning that

Dµgνσ = 0, withDµ being the covariant derivative) may have non-vanishing antisymmetric
componentsSµνσ = 1

2(0µν
σ −0νµσ )which are the torsion tensor components in a coordinate

basis. A general affine connection compatible with the metric can always be represented in
the form [1]0µνσ = 0µνσ +gσα(Sµνα−Sναµ +Sαµν), where0µνσ are the Christoffel symbols
associated with the metricgµν . As was first pointed out by Cartan, the existence of connections
that are compatible with the metric and do not coincide with the natural Riemannian connection
0µν

σ may lead to more general theories of gravity than Einstein’s general relativity (see, e.g.,
[2] for a review and references therein). Consequently, the actual motion of a spinless point
particle may, in principle, deviate from the usual geodesic motion due to an interaction with
torsion.

The torsion force cannot be arbitrary and its possible form should be obtained from some
physical principles. It is natural to assume the actual motion of a particle to enjoy general
coordinate covariance. A trajectory of the motion is determined by its tangent vector (or
velocity). To specify the corresponding equations of motion, one has to define a variation
of the velocity along the trajectory. In a space with a general affine connection there
exist two independent variation operators that involve a displacement and produce tensors
out of tensors (i.e. variations covariant under general coordinate transformations): the Lie
derivative and the covariant derivative [1], p 335. A physically acceptable variation should
contain the displacementduuµ = u̇µ of the velocity along itself (acceleration). The Lie
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derivative does not provide us with such a displacement. Therefore, the only possibility
is

Duu
µ = uνDνu

µ = u̇µ + 0νσ
µuνuσ = Fµ(S, g, u) (1.1)

whereFµ is a vector force. Next we require that the motion becomes geodesic when the
torsion vanishes, that is, the vectoruµ is transported parallel along itself with respect to a
natural Riemannian connection0µνσ

Duu
µ = u̇µ + 0νσ

µuνuσ = 0. (1.2)

This leads to the conditionFµ(S = 0, g, u) = 0. The simplest possibility proposed first
by Ponomarev [3] is to setFµ = 0. The corresponding curve is called the autoparallel.
Its characteristic geometrical property is similar to that of geodesics. The tangent vector is
transported parallel along itself with respect to a full affine connection. However, it does not
share another property of geodesics such as being the shortest curve between two points of the
manifold.

As follows from the comparison of equations (1.2) and (1.1) withFµ = 0, the deviation
of the autoparallel from the geodesic is caused by the torsion force 2Sµνσu

νuσ . The choice
between the geodesic and the autoparallel motion can either be decided experimentally or on
theoretical grounds following from the compatibility of the postulateFµ = 0 in (1.1) with other
fundamental principles of physics. In [4] it is argued that the energy–momentum conservation
law of a spinless point particle leads to geodesics rather than to autoparallels. The conclusion
is based on the earlier work by Papapetrou [5] that prescribes a specific relation between
the canonical momentum and the velocity of the particle. In general, the energy–momentum
tensor is defined as the variational derivative of the particle Lagrangian with respect to the
metric tensor. Its conservation law specifies the particle equations of motion that are the usual
Euler–Lagrange equations. Hence, if equation (1.1) admits the Euler–Lagrange form, then the
energy–momentum conservation law may lead to the autoparallels as is shown in appendix A
with an explicit example.

Based on a physical analogy between spaces with torsion and crystals with topological
defects [6], the attention has been brought again to the autoparallel motion in [7], section 10,
where it was also quantized by the path integral method. The approach gives a consistent
(non-relativistic) quantum theory only for a special (‘gradient’) torsion [7], section 11. For a
generic torsion it leads to difficulties with the probabilistic interpretation of the corresponding
quantum mechanics and does not comply with the correspondence principle [8].

The problem of coupling between matter and the spacetime geometry is undoubtedly of
great importance. So far only the principle of minimal gauge coupling has been explored [2, 9],
except, maybe, for the conformal coupling [10]. Based on the minimal gauge coupling principle
and the conservation theorems it has been argued [11] that in two possible generalizations of
Einstein’s general relativity, known as the tetrad theory and the Poincaré gauge theory, scalar
matter has the same classical equations of motion as in Einstein’s theory. It is noteworthy that
the renormalization arguments in quantum field theory with an external torsion background
have led the authors of [12] to the conclusion thatnon-minimalcoupling is necessary to make
the theory consistent. The aim of the present work is to approach the problem from a different
and more general point of view, where no assumption about a form of the theory of gravity
with torsion nor about the conservation laws is made. The idea is as follows. All models of
the fundamental interactions are described by quantum field theory. Thus, if the autoparallels
indeed describe the motion of a spinless point particle in a general Riemann–Cartan space,
then they must follow from a local quantum scalar field theory in the semiclassical (eikonal)
approximation. A conventional way to construct a quantum field theory that satisfies the
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correspondence principle is first to quantize the relativistic particle motion, thus obtaining
relativistic quantum mechanics, and then to apply the so-called second quantization procedure
[13].

Consider, for example, the geodesic motion (1.2) which follows from a least action
principle for the action

Sg =
∫
Lg dt = −m

∫ √
gµνvµvν dt = −m

∫
ds (1.3)

wherevµ = dqµ/dt . In (1.1) it has been seṫuµ = duµ/ds anduµ = dqµ/ds. To quantize
the system, one goes over to the canonical Hamiltonian formalism by means of the Legendre
transformation forvµ. Defining the canonical momentumpµ = ∂Lg/∂v

µ we find that the
canonical HamiltonianH = pµvµ − Lg = 0 vanishes identically. This happens due to the
local time reparametrization symmetry of the action (1.3). It is not hard to be convinced that
the HessianHµν = ∂2Lg/(∂v

µ∂vν) is degenerate (in particular,Hµνvν = 0) and, therefore,
the system has a constraint. It has the well known form5 = p2−m2 = 0. According to Dirac
[14], after promotingpµ andqµ to self-adjoint operators satisfying the Heisenberg algebra,
the constraint̂5 has to annihilate physical states

5̂ψ = (p̂2 −m2)ψ = 0 (1.4)

where−p̂2 is the Laplace–Beltrami operator (¯h = 1). In doing so, we obtain a relativistic
quantum mechanics that leads to the geodesic motion of the wavepackets in the eikonal
approximation. We remark that there is an operator ordering ambiguity upon quantization
p2 → p̂2, and, in general, the operator5̂ may have corrections (of order ¯h2) proportional
to the scalar curvature [10]. However, they are not relevant for the leading order of the
eikonal approximation. The canonical Hamiltonian vanishes identically, hence, the Schrödiger
evolution i∂tψ = Ĥψ ≡ 0 is trivial. Therefore the constraint (1.4) entirely specifies the
evolution of relativistic quantum particle states. This latter property allows one to construct a
corresponding quantum field theory. If all solutions of (1.4) are labelled by a set of parametersk,
then a Heisenberg quantum field operator that carries quanta (particles) with quantum numbers
k and wavefunctionsψk(q) readsφ̂ =∑k ψk(q)âk + h.c. whereâk andâ†

k are destruction and
creation operators of these quanta. The corresponding action of such a field theory inn

dimensions is [10]

S =
∫

dnq
√
g φ5̂φ =

∫
dnq
√
g
(
gµν∂µφ∂νφ −m2φ2

)
. (1.5)

Thus the constraint occurring through the time reparametrization (gauge) symmetry specifies
the sought-for quantum field theory obeying the correspondence principle.

The same strategy can be applied to build a relativistic quantum theory for the autoparallel
motion. That is, we need a Lagrangian for equation (1.1). It has to fulfil some additional
physical conditions: (a) to be time reparametrization invariant; (b) to be invariant under general
coordinate transformations (i.e. to be a scalar); and (c) to turn into (1.3) as the torsion approaches
zero (analyticity in torsion). We remark that the autoparallel equation (1.1) withFµ ≡ 0
exhibits the time reparametrization symmetry therefore it is natural to expect the Lagrangian
to fulfil condition (a). Yet, as has been pointed out, the constraint occurring through this gauge
symmetry entirely determines the evolution of arelativisticquantum particle interacting with
the spacetime geometry. The second condition is the standard one: physics cannot depend on
the choice of a coordinate system. The third one is natural since we expect a small deviation
from the geodesic motion in the limit of small torsion. Thus, we have reduced our problem to
the well known and, in fact, long-standing problem of mathematical physics. Given a set of
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equations of motion, find out whether they admit the Euler–Lagrange form. This is the inverse
problem of the calculus of variations. Necessary and sufficient conditions for the solution to
exist were first formulated by Helmholtz [15].

2. The Helmholtz conditions for the autoparallel motion

Let the equations of motion be a system of differential equations of second order

Gµ(v̇, v, q) = Hµν(v, q)v̇ν +Bµ(v, q) = 0. (2.1)

The question arises: does there exist a Lagrangian whose Lagrange derivative [L]µ coincides
with the equation of motion? That is,

Gµ = [L]µ ≡ ∂2L

∂vµ∂vν
v̇ν +

∂2L

∂vµ∂qν
vν − ∂L

∂qµ
. (2.2)

Helmholtz found necessary and sufficient conditions on the functionsGµ of the independent
variablesq, v, v̇ in order for the Lagrangian to exist [15]:

∂Gµ

∂v̇ν
= ∂Gν

∂v̇µ
(2.3)

∂Gµ

∂vν
+
∂Gν

∂vµ
= d

dt

{
∂Gµ

∂v̇ν
+
∂Gν

∂v̇µ

}
(2.4)

∂Gµ

∂qν
− ∂Gν

∂qµ
= 1

2

d

dt

{
∂Gµ

∂vν
− ∂Gν

∂vµ

}
. (2.5)

With respect to an arbitrary time parametert the autoparallel equation (1.1) is

Gµ = [Lg]µ + 2Sµνλ
vνvλ√
v2
= 0. (2.6)

The geodesic term [Lg]µ obviously fulfils the Helmholtz conditions. The second term in (2.6)
is the torsion force that causes a deviation of the trajectory from the geodesics [Lg]µ = 0.
Due to the linearity inGµ, the Helmholtz conditions yield restrictions on the torsion force
only. From the second Helmholtz condition (2.4), the restrictionSµ(νλ) = 0 on torsion can be
deduced. This implies vanishing of the torsion force in (2.6). Thus, equation (2.2) doesnot
have any solution for anon-vanishingtorsion force.

The only possibility to find a Lagrangian formalism for the autoparallel is to look for an
equivalentset of equations which may have the Euler–Lagrange form. This can be done by
introducing a multiplier�µν(v, q) with det�µν 6= 0 which acts as an integrating factor in
equation (2.2). We are then looking for a solution to the equation

[L]µ = �µνGν. (2.7)

The integrability conditions (2.3)–(2.5) become less restrictive forGµ itself since some of
them can be fulfilled by an appropriate choice of the multipliers. This procedure was first
proposed in [16]. Although there has been much progress in this approach (see [17]) and some
useful techniques have been invented to simplify the Helmholtz conditions, the problem still
remains unsolved in general. Recently, the inverse variational problem for equation (1.1) with
Fµ = 0 has been solved in two dimensions [18]. However, in these works the proper time
s in the equation of motion (1.1) has been considered as the Lagrangian timet . The actions
obtained are not time reparametrization invariant. Consequently, it would be difficult to give
them a physical interpretation in the framework of a relativistic theory. However, they might
be useful to study a non-relativistic autoparallel motion on two-dimensional surfaces.
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3. The gradient case

Here we give an example where the Helmholtz integrability conditions are fulfilled for the
generalized problem (2.7). Consider a special case where the trace of the torsion tensor is a
gradient and the traceless part vanishes,

Sµν
λ = 1

2

(
δλµ ∂νσ − δλν ∂µσ

)
. (3.1)

The corresponding autoparallel equation (2.6) follows from the least action principleδS(σ) = 0
where [19] (see also [20])

S(σ) =
∫
L(σ) dt = −m

∫
eσ(q)

√
gµνvµvν dt = −m

∫
eσ(q) ds. (3.2)

Whereas the action (1.3) for geodesics is just an integral over proper time, in (3.2) a scalar
factor eσ(q) occurs. The same Lagrangian was obtained in Brans–Dicke theory [21], where
the masses of particles depend on positionm→ m(q) = meσ(q). The scalar fieldσ can also
be interpreted as the dilaton field [22] emerging in the low-energy limit of the string theory
together with the metricgµν .

The Lagrange derivative ofL(σ) reads

[L(σ)]µ = eσ
(

[Lg]µ + (gµλ∂νσ − gνλ∂µσ)v
νvλ√
v2

)
= 0. (3.3)

It has the form (2.7) with the multiplier�µν = eσ δνµ. Equation (3.3) exhibits the time
reparametrization symmetry. The trajectory can be defined in a gauge-invariant way by
specifying the proper time. Since the theory has an extra scalar functionσ available, the
gauge-invariant time is not unique: ds = f (σ)√gµνvµvν dt withf (σ)being a general positive
function ofσ . If we setf = 1, equation (3.3) turns into the autoparallel equation

gµνu̇
ν + (0λνµ + gµλ∂νσ − gνλ∂µσ)uλuν = 0. (3.4)

It should be stressed that the trajectory depends on the definition of the (proper) gauge-invariant
time. For instance, with the choicef = eσ equation (3.3) turns into ageodesicequation.
Indeed, under the conformal transformation,

gµν −→ g(σ)µν = e2σ gµν (3.5)

the action (3.2) goes over to the action (1.3) for geodesics associated with the new metricg(σ)µν

and the new proper time ds(σ) = eσ ds. Thus, a violation of Einstein’s equivalence principle
due to the ‘dilaton’ force in (3.4) can be observed, provided there is a possibility to distinguish
experimentally between the measurements of distances and time intervals relative to the metrics
gµν andg(σ)µν . We return to this issue later in the conclusions. The metric rescaling (3.5) can be
used to remove the force caused by the ‘gradient’ part of the torsion tensor from the equation
of motion:

Gµ(gαβ, Sαβγ ) = eσGµ

(
e−2σ gαβ, Sαβγ + S(σ)αβγ

)
(3.6)

whereS(σ)αβγ is given by (3.1) and in both sides of equation (3.6) the proper time is defined with
f = 1.

Now we make use of this symmetry to built up a quantum field theory which in a
semiclassical approximation would lead to the autoparallel motion of the wavepackets in the
‘gradient’ torsion and metric background fields. To this end we go over to the Hamiltonian
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formalism for the action (3.2). The canonical momenta arepµ = ∂L(σ)/∂vµ = −meσ vµ/
√
v2,

so the constraint is

5(σ) = p2 −m2e2σ = 0. (3.7)

To construct the corresponding quantum field theory we can simply take the field action
(1.5) with the new metricg(σ)µν and canonically quantize it. The correspondence principle
is automatically fulfilled. Indeed, in the semiclassical approximation for the quantum field
theory associated with the action (1.5) the wavepackets would follow geodesics with respect
to the background metricg(σ)µν [23]. Making use of the symmetry (3.6) we see that the classical
trajectories are autoparallels with respect to the metricgµν and the ‘gradient’ torsion generated
by the background scalar fieldσ . Thus the scalar field action that leads to a quantum scalar
field theory compatible with the correspondence principle is

S =
∫

dnq e(n−2)σ√g(gµν∂µφ∂νφ −m2e2σφ2
)
. (3.8)

It yields the following equation of motion for the scalar fieldφ:

�φ + (n− 2) ∂µσ ∂
µφ +m2e2σφ = 0 (3.9)

where� is the Laplace–Beltrami operator:�φ = (√g)−1 ∂µ(
√
g gµν∂νφ).

Equation (3.9) can be regarded as the quantum version of the constraint (3.7). Note that
a multiplication of the constraint (3.7) by some function of coordinates would lead to an
equivalent constraint on the classical level. In quantum theory the ordering of operators is
generally not unique. Here we have promoted5(σ) into an operator by multiplying it by e−2σ

and postulating that e−2σ p̂2 is the Laplace–Beltrami operator with respect to the metricg(σ)µν .
This ensures thehermiticityof the constraint with respect to a scalar product with the measure√
g(σ) dnq = enσ

√
g dnq, thus providing theunitarity of the time evolution.

4. Perturbation theory

Here we come to the conclusion that there is no Lagrangian formalism (subject to the physical
conditions required) for the autoparallel motion, except for the gradient case discussed above.
We make use of our third physical assumption that the Lagrangian, if it exists, should be
analytic in the torsion tensor. So far, no experimental observation of torsion has been made.
Therefore, the torsion force must be small compared with the gravitational force induced by
the metric. This, in turn, suggests solving the integrability conditions for equation (2.7) by
perturbationtheory in the torsion tensor. We shall see that the integrability conditions are not
fulfilled even in the first order of the perturbation theory, thus leading to the conclusion of the
non-existence of the Lagrangian in general. We start with the ansatz

L(v, g, S) = Lg(v, g) +L1(v, g, S) + O(S2) (4.1)

which contains the LagrangianLg (1.3) for geodesics and a perturbationL1 linear in the torsion
tensor. From equation (2.7) it follows that the multiplier must also be analytic in torsion, so
we set

�µ
λ(v, g, S) = δλµ + ωµ

λ(v, g, S) + O(S2). (4.2)

In this approximation, the substitution of (2.6) in (2.7) leads to

[L1]µ = ωµλ[Lg]λ + 2Sµνσ
vνvσ√
v2
. (4.3)
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The variables ˙v, v, q are considered as independent variables. The integrability conditions
for (4.3) are still difficult to analyse because of the presence of the general functionsωµ

λ.
Therefore, we first look for the integrability conditions in the velocity space assuming the
configuration space point to be fixed. We setqµ = qµ0 after calculating all the derivatives∂µ in
(4.3). Equation (4.3) is covariant under general coordinate transformations as a consequence of
our second assumption. In particular, we may assume a geodesic coordinate system [24] atq

µ

0 .
This has the advantage that the Christoffel symbols are zero at the origin0µν

λ(q0) = 0. Thanks
to this property, the termωµλ[Lg]λ is proportional to the acceleration ˙vµ and must cancel
with the corresponding term contained in [L1]µ. This leads to an equation for the multiplier
which is not relevant for the subsequent analysis. For the remaining terms atqµ = q

µ

0 we
obtain

vν
∂2L1

∂qν∂vµ
− ∂L1

∂qµ
= 2Sµνσ

vνvσ√
v2
. (4.4)

Next, in the vicinity ofq0 we apply the Fourier transformL1(q, v) =
∫

dk eikqL̃1(k, v),
similarly for S̃µνσ (k), so that∂L1/∂q

µ
∣∣
q=q0
= ∫

dk ikµeikq0L̃1(k, v). Substituting this into

(4.4), we obtain a first-order differential equation forL̃1(k, v)as a function ofvµ. This equation
can be simplified by the ansatzL̃1 = kµvµc(k, v), leading to

i
∂c

∂vµ
= 2

(k, v)2
S̃µνσ

vνvσ√
v2
. (4.5)

The integrability conditions for equation (4.5) are now easy to derive:∂2c/∂vµ∂vν −
∂2c/∂vν∂vµ = 0. After multiplying them by the factor

(
(k, v)

√
v2
)3

, they turn into a set
of vanishing linear combinations of the monomialsvνvσ vαvβ . Sincevµ are independent
variables we are left with the equation

2k[µS̃λ](νσ ηαβ) + k(ν{S̃[µλ]σ ηαβ) + S̃σ [λµ]ηαβ) + S̃[λ|αβησ)µ]} = 0. (4.6)

Here the indices(νσαβ) must be symmetrized, while the indices in the square brackets [µλ]
are antisymmetrized.

There are two cases where the integrability condition (4.6) is fulfilled identically and,
hence, the Lagrangian always exists. First, we observe thatvµ∂c/∂vµ ≡ 0 sinceSµνσ =
−Sνµσ . Therefore,c depends only on the angular variables in the velocity space, not on the
norm

√
v2. In two dimensions, equation (4.5) contains only one non-trivial equation which

always has a solution. The Lagrangian can be constructed as proposed in appendix B. The
second case is̃Sµνλ ∼ δn(k), i.e. when the torsion tensor is constant in the coordinate system
chosen. It is easy to obtain a simple recursion relation for an explicit form of all orders of
perturbation theory for the LagrangianL. However, the condition∂µSνλσ = 0 is not covariant
under general coordinate transformations. So, the corresponding Lagrangian is not a scalar
and cannot be regarded as physically acceptable.

The torsion tensor can always be decomposed into a trace, a totally antisymmetric part
and a traceless partQµνλ which is not totally antisymmetric. The totally antisymmetric part
satisfies (4.6) identically because it does not contribute to the torsion force at all. We set

Sµν
σ = 1

n− 1

(
Sµδ

σ
ν − Sνδσµ

)
+Qµν

σ (4.7)

whereSµ = Sµλλ. Contracting (4.6) withkνkσ kαkβ , ηνσ ηαβ andkαkβηνσ we obtain a system
of linear equations

βµλ + 3γµλ = 0 (2n + 5)αµλ + (n + 1)βµλ = 0

3αµλ + (n + 4)βµλ + (2n + 11)γµλ = 0
(4.8)
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for αµλ = k[µS̃λ] , βµλ = kσ (S̃[µλ]
σ + S̃σ [λµ]) andγµλ = k[µS̃λ]νσ k

νkσ /k2. As for every fixed
µ andλ the determinant of the matrix of the coefficients is 2(n − 2)(n + 1), the system has
only a trivial solutionαµν = βµν = γµν = 0 for n > 2. The relationαµν = 0 gives rise to a
restriction on the traceSµ

k[µS̃λ] = 0 hence Sλ(q) ∼ ∂λσ (q). (4.9)

That is, in any dimension greater than two the contracted torsion tensor must be a potential
vector field. At this point we may already conclude that for ageneric torsion the inverse
variational problem for the autoparallel equation has no solution. However, we proceed to
analyse the traceless part of the torsion tensor. The ‘gradient’ part of the torsion tensor (4.7)
satisfies (4.6) identically, so that the integrability condition (4.6) applies toQµνσ only. We
investigate it in three and four dimensions. Both cases are treated simultaneously.

The tensorQµνσ can be parametrized in three and four dimensions, respectively, as

Q
(3)
µνλ = εµνσAσ λ Q

(4)
µνλ = εµνσρBσρλ (4.10)

whereAµν is a symmetric, traceless 3× 3 matrix (sinceQ(3)ν
µν = 0 andεµνσQ(3)

µνσ = 0),
andBσρλ satisfiesεµσρλBσρλ = 0 and must be tracelessBσλλ = 0 (sinceQ(4)ν

µν = 0 and

εµνλσQ
(4)
νλσ = 0). Thus,Aµν contains five independent components, whileBµνσ has 16. They

are subject to the conditions

kσ Ã
σρ = 0 kσ B̃

[µλ]σ = 0 (4.11)

k(νÃαβδ
τ
σ) = 0 2η(αβ|kρB̃ρ[µ|σ δ

λ]
ν) + k(νB̃β

[µ
σ δ
λ]
α) = 0. (4.12)

Equation (4.11) is equivalent toβµν = 0, while equation (4.12) stems from the integrability
condition (4.6) whereβµν = 0 has been taken into account. It is possible to select five linearly
independent equations forAµν and 16 forBµνσ out of these equations. Thus, we conclude that
Q
(3,4)
µνλ = 0, and the Lagrangian exists only for the ‘gradient’ case.

5. Conclusions

We have proposed a rather general approach to study possible deviations from Einstein’s
equivalence principle due to the coupling between scalar matter and the torsion of spacetime.
Our approach is based on the inverse problem of the calculus of variations and general principles
of quantum field theory. It does not use any special generalization of Einstein’s general
relativity, neither does it rely on any specific form of the energy–momentum conservation law.
It is far more general than the minimal gauge coupling principle which is typically used to
construct a coupling between matter and spacetime geometry [2, 9]. We have shown that for
a generic torsion,no local quantum field theory exists in four dimensions that leads to the
autoparallel motion of spinless (scalar) particles in the semiclassical (eikonal) approximation.
Only when the torsion tensor has a special form, the above problem admits a solution. In this
case the coupling between scalar matter and torsion is described equivalently by the dilaton
field whose existence is predicted by string theory [22].

The Einstein equivalence principle is not violated by the coupling between matter and the
dilaton field if the coupling obeys theuniversalityprinciple [25], meaning that it is constructed
by the replacementgµν → g(σ)µν = e2σ gµν in the matter Lagrangian. Indeed, there would be no
experiment that distinguishes the motion of test particles in the composite background metric
g(σ)µν from that in the background metricgµν and the dilaton fieldσ . A deviation from Einstein
general relativity can only be seen in cosmology which is affected bydynamicsof the dilaton
field [25, 26].
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We remark that the minimal gauge coupling principle does not predict the dilaton
and leads only to the coupling between spin and torsion. As has been stressed by some
authors (see the discussion in [27]) such a coupling might pose a consistency problem since
the spin of composed particles is not simply a sum of the spins of its constituents, but
also involves the orbital angular momentum. For instance, a spinning particle could be a
bound state ofspinlessparticles (e.g. a vector boson composed of a few scalar bosons, etc).
Therefore, such a spinning particle would not interact with torsion at all. Thus, when applying
the minimal gauge coupling principle, one has always to decide whether a given kind of
particle is truly elementary or composite. Such a drawback could be circumvented either
by allowing for the coupling of torsion to the angular momentum or by simply postulating
that any theory for composite spinning particles should be consistent with the minimal
gauge coupling principle, thus making a restriction on future fundamental theories. Given
the difficulties of describing composite relativistic quantum fields, this latter option does
not seem easy to pursue in practice, neither does it seem to admit a simple geometrical
interpretation.

Here we have explored the first possibility. The autoparallel equation (1.1) (Fµ ≡ 0) can
be rewritten as the matter energy–momentum conservation law [28]

DµT
µν

+ 2SνµσT
µσ = 0 (5.1)

whereT µν is the energy–momentum tensor in general relativity (see also appendix A). The
second term in (5.1) contains an interaction between the torsion and the angular momentum.
We have proved that there exists no local quantum field theory whose dynamics complies with
equation (5.1) except the special case when all the effects of torsion can be interpreted as those
caused by the dilaton. One could also regard this result as an argument supporting the point of
view that the spacetime geometry is specified only by the metric and possibly by the dilaton
field.

We remark that the minimal price of incorporating equation (5.1) into a quantum theory
is to give up locality [29]. This does not seem to us acceptable in quantum field theory of
fundamental interactions, but still may be possible in effective theories describing a quantum
motion of interstitial particles in crystals with topological defects.
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Appendix A. Energy–momentum conservation for the autoparallels

The energy–momentum conservation law follows from the invariance of the action under
general coordinate transformations. As compared with the geodesic action (1.3), the action
(3.2) contains an extra scalar field describing the background spacetime geometry so that its
variation is determined by both the variations of the metricgµν and the dilatonσ . Thus, we
obtain

0= δS =
∫

d4q
√
g

{
1

2
T µνδgµν + T µµ δσ +

δL
δqµ

δqµ
}

(A.1)
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where, as usual,

T µν(q) ≡ δL
δgµν(q)

= 1√
g(q)

∫
ds δ4(q − q(s))pµuν (A.2)

is the energy–momentum tensor andL is the Lagrangian density defined byL = ∫ d3q L. We
observe thatT µν = eσ T

µν
whereT

µν
is the energy–momentum tensor for the geodesic motion.

The difference occurs through theσ dependence of the particle momentum:pµ = −meσ(q)uµ.
One can easily convince oneself thatδL/δσ = T µµ ≡ T , which specifies the second term in
(A.1). For the actual motion of the particle the third term in (A.1) vanishes and we obtain the
energy–momentum conservation law (cf equation (5.1))

DµT
µλ

+ T
µλ
∂µσ − T ∂λσ = 0. (A.3)

We see two additional terms occurring in the conservation law due to the torsion force.
Integrating this equation over a three-dimensional spacelike hypersurfaceq0 = constant we
again recover the autoparallel equation for the ‘gradient’ torsion (3.4).

Appendix B. The autoparallel Lagrangian in two dimensions

In two dimensions the integrability conditions (4.6) yield no restriction on torsion because of
the time reparametrization invariance. Indeed, by fixing the gaugeq0 ≡ t the problem becomes
one dimensional. A general solution of the one-dimensional inverse variational problem was
found by Darboux [30]. So, the Lagrangian always exists for the two-dimensional autoparallel
motion. However, the constraint appears to be non-polynomial in the canonical momenta, thus
leading to anon-localquantum field theory.

The torsion tensor can be parametrized in two dimensions by two scalar functionsλ and
σ :

Sµν
α = 1

2εµν
(
∂αλ + εαβ∂βσ

)
. (B.1)

Let us decompose the velocity vector into the sum of two orthogonal vectors:uµ =
[ϕkµ + (1− ϕ2)1/2(εk)µ]/

√
k2, whereϕ = (k, u)/

√
k2. Solving equation (4.5) forc = c(ϕ)

we find

iL̃1 =
√
v2
(
σ̃ + ϕ ln[ϕ−1 + (ϕ−2 − 1)1/2]λ̃

)
. (B.2)

The first term is the linear part of the Lagrangian (3.2) for the ‘gradient’ torsion. The second
term is non-polynomial inϕ. This property of the Lagrangian holds in higher orders of the
perturbation expansion (4.1) as can be seen from a recursion relation forLi . Therefore,
the Lagrangian would lead to a constraint which is non-polynomial inp in all (but leading)
orders of the perturbation theory. The corresponding quantum field theory will be non-local.
We conclude that even in two dimensions only the ‘gradient’ torsion leads to an acceptable
quantum field theory.

It is certainly possible to find a Lagrangian for the generic torsion (B.1). However, a
complete discussion would be too involved and goes beyond the scope of this paper. Such a
Lagrangian does not seem significant for physical applications. Just to give an idea of how
the Lagrangian may look, we calculate it under the simplifying conditionsgµν = ηµν and
∂0λ = 0. This latter condition obviously violates the general coordinate invariance, but will
allow us to find anexplicit form of the Lagrangian by a short and simple method. We also set
σ = 0 since the gradient case has already been discussed. After fixing the gauge byq0 = t
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(v0 = 1) and adopting the notationsv1 ≡ v, ∂1λ ≡ ∂xλ we obtain one simple equation from
the autoparallel equation (1.1)

v̇ + ∂xλ(v − v3) = 0. (B.3)

The associated Lagrangian can be found via the Hamiltonian formalism. The first Hamiltonian
equation is set to bėx = p/

√
1 +p2 = ω∂pH . Then the second Hamiltonian equation can

be derived from (B.3) aṡp = −p∂xλ = −ω∂xH . These equations can easily be solved
for the HamiltonianH and the symplectic structureω. Next, choosing Darboux coordinates
X = x andP such as∂pP = ω−1, the Lagrangian is obtained by the Legendre transformation
for P : L(v, λ) = P ẋ − H . The time reparametrization invariance is restored by the rule
L(λ)(v

0, v1, λ) = v0L(v1/v0, λ) [14]. Therefore, the Lagrangian is

L(λ) = −
√
v2 coshλ− v1 lnW sinhλ (B.4)

whereW = |v0/v1 +
√
(v0/v1)2 − 1|. It is not difficult to see that the constraint resulting from

u2 = 1 is not polynomial in the canonical momentapµ becausepµ = pµ(u) contain lnW .
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